Harmonic Range
   HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, a projective range is a set of points in projective geometry considered in a unified fashion. A projective range may be a projective line or a conic. A projective range is the
dual Dual or Duals may refer to: Paired/two things * Dual (mathematics), a notion of paired concepts that mirror one another ** Dual (category theory), a formalization of mathematical duality *** see more cases in :Duality theories * Dual (grammatical ...
of a
pencil A pencil () is a writing or drawing implement with a solid pigment core in a protective casing that reduces the risk of core breakage, and keeps it from marking the user's hand. Pencils create marks by physical abrasion, leaving a trail ...
of lines on a given point. For instance, a
correlation In statistics, correlation or dependence is any statistical relationship, whether causal or not, between two random variables or bivariate data. Although in the broadest sense, "correlation" may indicate any type of association, in statistics ...
interchanges the points of a projective range with the lines of a pencil. A projectivity is said to act from one range to another, though the two ranges may coincide as sets. A projective range expresses projective invariance of the relation of
projective harmonic conjugate In projective geometry, the harmonic conjugate point of an ordered triple of points on the real projective line is defined by the following construction: :Given three collinear points , let be a point not lying on their join and let any line t ...
s. Indeed, three points on a projective line determine a fourth by this relation. Application of a projectivity to this quadruple results in four points likewise in the harmonic relation. Such a quadruple of points is termed a harmonic range. In 1940 Julian Coolidge described this structure and identified its originator: :Two fundamental one-dimensional forms such as point ranges, pencils of lines, or of planes are defined as projective, when their members are in one-to-one correspondence, and a harmonic set of one ... corresponds to a harmonic set of the other. ... If two one-dimensional forms are connected by a train of projections and intersections, harmonic elements will correspond to harmonic elements, and they are projective in the sense of Von Staudt.


Conic ranges

When a conic is chosen for a projective range, and a particular point ''E'' on the conic is selected as origin, then ''addition of points'' may be defined as follows:Viktor Prasolov & Yuri Solovyev (1997) ''Elliptic Functions and Elliptic Integrals'', page one, Translations of Mathematical Monographs volume 170,
American Mathematical Society The American Mathematical Society (AMS) is an association of professional mathematicians dedicated to the interests of mathematical research and scholarship, and serves the national and international community through its publications, meetings, ...
: Let ''A'' and ''B'' be in the range (conic) and ''AB'' the line connecting them. Let ''L'' be the line through ''E'' and parallel to ''AB''. The "sum of points ''A'' and ''B''", ''A'' + ''B'', is the intersection of ''L'' with the range. The
circle A circle is a shape consisting of all points in a plane that are at a given distance from a given point, the centre. Equivalently, it is the curve traced out by a point that moves in a plane so that its distance from a given point is const ...
and
hyperbola In mathematics, a hyperbola (; pl. hyperbolas or hyperbolae ; adj. hyperbolic ) is a type of smooth curve lying in a plane, defined by its geometric properties or by equations for which it is the solution set. A hyperbola has two pieces, cal ...
are instances of a conic and the summation of angles on either can be generated by the method of "sum of points", provided points are associated with
angle In Euclidean geometry, an angle is the figure formed by two Ray (geometry), rays, called the ''Side (plane geometry), sides'' of the angle, sharing a common endpoint, called the ''vertex (geometry), vertex'' of the angle. Angles formed by two ...
s on the circle and hyperbolic angles on the hyperbola.


References

{{Reflist *
H. S. M. Coxeter Harold Scott MacDonald "Donald" Coxeter, (9 February 1907 – 31 March 2003) was a British and later also Canadian geometer. He is regarded as one of the greatest geometers of the 20th century. Biography Coxeter was born in Kensington t ...
(1955) ''The Real Projective Plane'',
University of Toronto Press The University of Toronto Press is a Canadian university press founded in 1901. Although it was founded in 1901, the press did not actually publish any books until 1911. The press originally printed only examination books and the university calen ...
, p 20 for line, p 101 for conic. Projective geometry